Acyclic and Star Colorings of Joins of Graphs and an Algorithm for Cographs

Andrew Lyons

Computation Institute, University of Chicago and Mathematics and Computer Science Division, Argonne National Laboratory

compiled November 16, 2009 from draft version hg:7b857b86f21d:147

Subgraphs and Induced Subgraphs

$$G = \{V, E\}$$

Subgraph

$$G' = \{V', E'\}$$
 where $V' \subseteq V$ and $E' \subseteq E$

Induced Subgraph

 $G' = \{V', E'\}$ where $V' \subseteq V$ and E' consists of all edges with both endpoints in V' (vertex-induced subgraph)

Outline

Restricted Coloring Problems

Acyclic coloring Star Coloring

Applications to Hessian Computation

Star Coloring – Direct Hessian Computation Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs

The Join Operation *
Main Theorem
The Binary Case

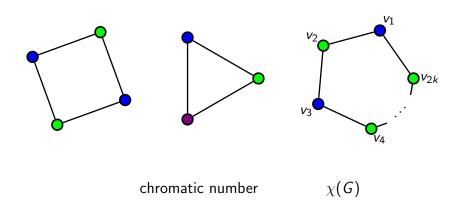
Cographs

Definitions and Characterizations Algorithms for Acyclic and Star Coloring Example

Future Work

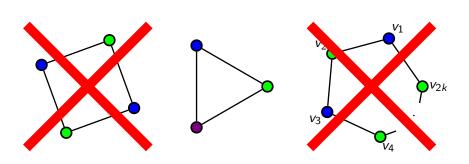
Coloring

proper vertex coloring

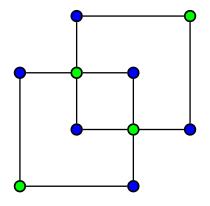


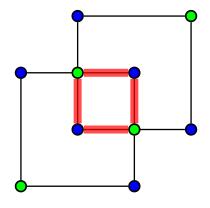
Acyclic Coloring

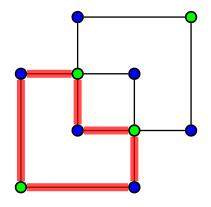
proper vertex coloring without bichromatic cycles

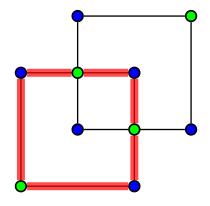


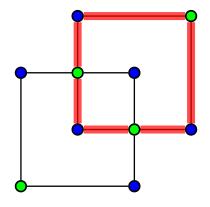
acyclic chromatic number $\chi_a(G) \geq \chi(G)$

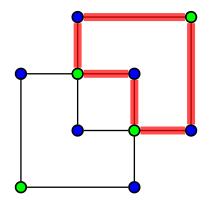


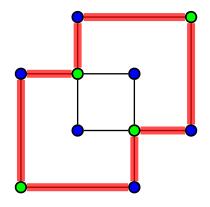


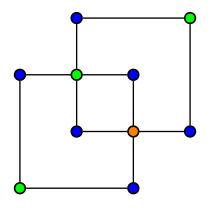












$$\chi_a(G)=3$$

Acyclic Coloring - Definitions

A proper vertex coloring such that ...

Original Definition

... every (even) cycle uses ≥ 3 colors.

Acyclic Coloring - Definitions

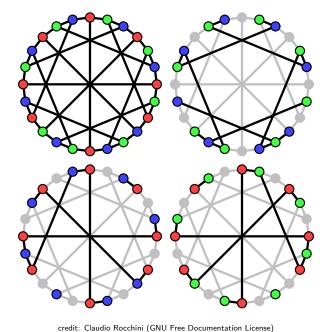
A proper vertex coloring such that ...

Original Definition

... every (even) cycle uses ≥ 3 colors.

Bichromatic Induced Subgraphs

...the subgraph induced by any two color classes is a disjoint collection of trees (a *forest*).



http://commons.wikimedia.org/wiki/File:Acyclic_coloring.svg

Acyclic Coloring - Algorithms

Chordal Graphs

Solvable in linear time for this class of graphs.

(In fact, every coloring of a chordal graph is also an acyclic coloring.) (Gebremedhin, Pothen, Tarafdar, & Walther 2009).

Acyclic Coloring – Algorithms

Chordal Graphs

Solvable in linear time for this class of graphs.

(In fact, every coloring of a chordal graph is also an acyclic coloring.) (Gebremedhin, Pothen, Tarafdar, & Walther 2009).

Bounded maximum degree $\Delta(G)$

- ▶ If $\Delta(G) \leq 3$, then G can be acyclically colored using 4 colors or fewer in linear time (Skulrattanakulchai 2004).
- ▶ If $\Delta(G) \leq 5$, then G can be acyclically colored using 9 colors or fewer in linear time (Fertin & Raspaud 2008).

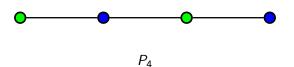
Acyclic Coloring - Complexity

NP-Complete to determine whether $\chi_a(G) \leq 3$ (Kostochka 1978)

NP-hard even when restricted to bipartite graphs (Coleman & Cai 1986)

Coloring

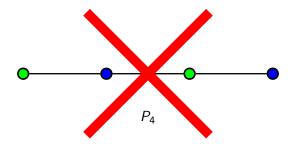
proper vertex coloring



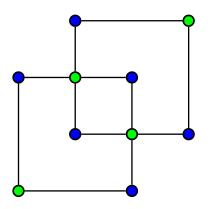
chromatic number

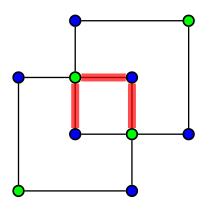
 $\chi(G)$

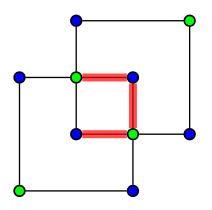
proper vertex coloring with no bichromatic P_4 (That's every P_4 , not just the induced ones)

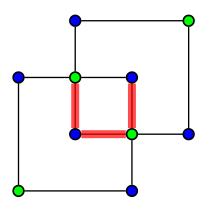


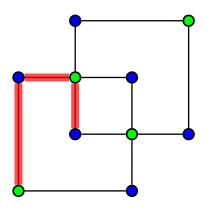
star chromatic number $\chi_s(G) \ge \chi_a(G) \ge \chi(G)$ (A bichromatic cycle implies a bichromatic P_4)

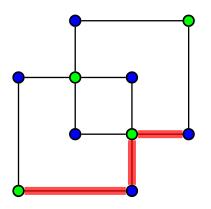


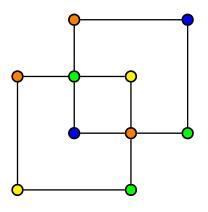












$$\chi_s(G) = 4$$
 (I think)

Star Coloring – Definitions

A proper vertex coloring such that ...

Original Definition

... every P_4 uses ≥ 3 colors.

Star Coloring – Definitions

A proper vertex coloring such that ...

Original Definition

... every P_4 uses ≥ 3 colors.

Bichromatic Induced Subgraphs

... the subgraph induced by any two color classes is a disjoint collection of *stars*.

Star Coloring – Complexity

NP-Complete to determine whether $\chi_s(G) \leq 3$ for planar bipartite graphs (Albertson, Chappell, Kierstead, Kündgen, & Ramamurthi 2004)

NP-hard when restricted to bipartite graphs (Coleman & Moré 1984)

Star Coloring – Complexity

NP-Complete to determine whether $\chi_s(G) \leq 3$ for planar bipartite graphs (Albertson, Chappell, Kierstead, Kündgen, & Ramamurthi 2004)

NP-hard when restricted to bipartite graphs (Coleman & Moré 1984)

Open Problem

For a split graph G, $\chi_s(G)$ is either $\omega(G)$ or $\omega(G)+1$. What is the complexity of determining this?

Outline

Restricted Coloring Problems

Acyclic coloring
Star Coloring

Applications to Hessian Computation

Star Coloring – Direct Hessian Computation Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs

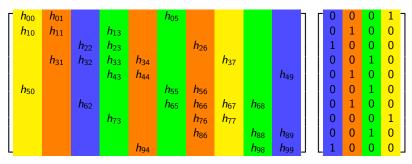
The Join Operation *
Main Theorem
The Binary Case

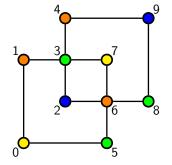
Cographs

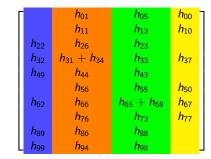
Definitions and Characterizations Algorithms for Acyclic and Star Coloring Example

Future Work

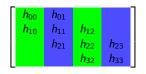
Star Coloring - Direct Hessian Computation

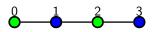


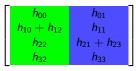




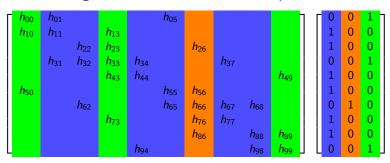
Star Coloring - Direct Hessian Computation

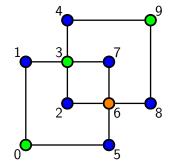


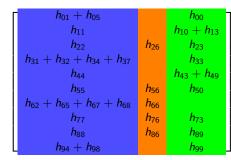




Acyclic Coloring - Indirect Hessian Computation

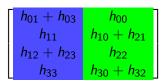






Acyclic Coloring – Indirect Hessian Computation

h_0	0	h_{01}		h ₀₃	1
h_1	0	h ₁₁	h ₂₁		l
		h ₁₂	h ₂₂	h ₂₃	ĺ
h ₃	0		h ₃₂	h ₃₃	



Coloring for Efficient Derivative Matrix Computation

Hessian Computation

Star Coloring: Direct computation

Acyclic coloring: Indirect (substitution) computation

Jacobian Computation

Distance-2 Coloring: Direct, 1-dimensional computation

Star Bicoloring: Direct, 2-dimensional computation

Acyclic Bicoloring: Indirect (substitution), 2-dimensional computation

A. Gebremedhin, F. Manne, A. Pothen, What Color Is Your Jacobian? Graph Coloring for Computing Derivatives, SIAM Review 47:4 (2005).

Outline

Restricted Coloring Problems

Star Coloring

Applications to Hessian Computation

Star Coloring – Direct Hessian Computation Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs

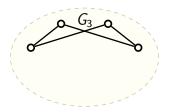
The Join Operation *
Main Theorem
The Binary Case

Cographs

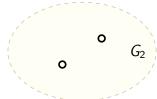
Definitions and Characterizations Algorithms for Acyclic and Star Coloring Example

Future Work

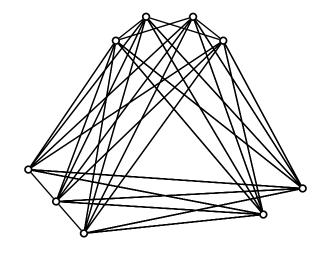
The Join Operation \ast







The Join Operation *



The Main Theorem

Theorem

Let $\{G_i = (V_i, E_i)\}_{i \in \mathcal{I}}$ be a finite collection of graphs. Then

(i)
$$\chi_{a}\left(\bigotimes_{i\in\mathcal{I}}G_{i}\right)=\sum_{i\in\mathcal{I}}\chi_{a}(G_{i})+\min_{j\in\mathcal{I}}\left\{\sum_{i\in\mathcal{I},i\neq i}(|V_{i}|-\chi_{a}(G_{i}))\right\};$$

The Main Theorem

Theorem

Let $\{G_i = (V_i, E_i)\}_{i \in \mathcal{I}}$ be a finite collection of graphs. Then

(i)
$$\chi_{a}\left(\bigotimes_{i\in\mathcal{I}}G_{i}\right)=\sum_{i\in\mathcal{I}}\chi_{a}(G_{i})+\min_{j\in\mathcal{I}}\left\{\sum_{i\in\mathcal{I},i\neq j}(|V_{i}|-\chi_{a}(G_{i}))\right\};$$

(ii)
$$\chi_s\left(\bigotimes_{i\in\mathcal{I}}G_i\right) = \sum_{i\in\mathcal{I}}\chi_s(G_i) + \min_{j\in\mathcal{I}}\left\{\sum_{i\in\mathcal{I},i\neq j}(|V_i| - \chi_s(G_i))\right\}.$$

The Binary Case

$$(G_1 * G_2) * G_3 = G_1 * (G_2 * G_3) = (G_1 * G_3) * G_2 = \cdots$$

The join operation is commutative and associative \Rightarrow we will work with the binary case.

The Binary Case

$$(G_1 * G_2) * G_3 = G_1 * (G_2 * G_3) = (G_1 * G_3) * G_2 = \cdots$$

The join operation is commutative and associative \Rightarrow we will work with the binary case.

Lemma

Let
$$G_1 = (V_1, E_1)$$
 and $G_2 = (V_2, E_2)$ be graphs. Then

(i)
$$\chi_a(G_1 * G_2) = \chi_a(G_1) + \chi_a(G_2) + \min\{|V_1| - \chi_a(G_1), |V_2| - \chi_a(G_2)\};$$

The Binary Case

$$(G_1 * G_2) * G_3 = G_1 * (G_2 * G_3) = (G_1 * G_3) * G_2 = \cdots$$

The join operation is commutative and associative \Rightarrow we will work with the binary case.

Lemma

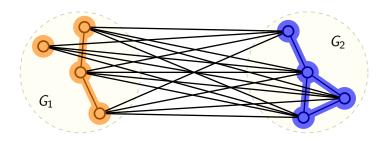
Let
$$G_1 = (V_1, E_1)$$
 and $G_2 = (V_2, E_2)$ be graphs. Then

(i)
$$\chi_a(G_1 * G_2) = \chi_a(G_1) + \chi_a(G_2) + \min\{|V_1| - \chi_a(G_1), |V_2| - \chi_a(G_2)\};$$

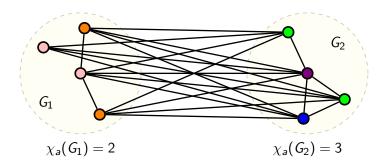
(ii)
$$\chi_s(G_1 * G_2) = \chi_s(G_1) + \chi_s(G_2) + \min\{|V_1| - \chi_s(G_1), |V_2| - \chi_s(G_2)\}.$$

- ▶ G_1 and G_2 are induced subgraphs of $G_1 * G_2$.
- ▶ G_1 and G_2 cannot share any colors.

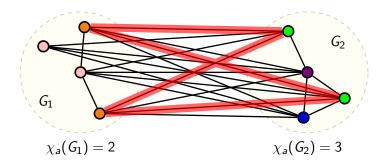
$$\chi_{\mathsf{a}}(\mathsf{G}_1 * \mathsf{G}_2) \geq \chi_{\mathsf{a}}(\mathsf{G}_1) + \chi_{\mathsf{a}}(\mathsf{G}_2)$$



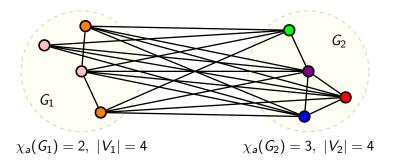
$$\chi_{\mathsf{a}}(\mathit{G}_1 * \mathit{G}_2) \geq \chi_{\mathsf{a}}(\mathit{G}_1) + \chi_{\mathsf{a}}(\mathit{G}_2)$$



$$\chi_{a}(G_{1}*G_{2}) \geq \chi_{a}(G_{1}) + \chi_{a}(G_{2})$$

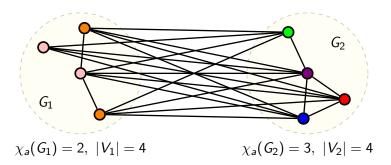


$$\chi_{a}(G_{1}*G_{2}) = \chi_{a}(G_{1}) + \chi_{a}(G_{2}) + \min\{|V_{1}| - \chi_{a}(G_{1}), |V_{2}| - \chi_{a}(G_{2})\}$$



$$\chi_{a}(G_{1}*G_{2}) = \chi_{a}(G_{1}) + \chi_{a}(G_{2}) + \min\{|V_{1}| - \chi_{a}(G_{1}), |V_{2}| - \chi_{a}(G_{2})\}$$

$$\chi_{s}(G_{1}*G_{2}) = \chi_{s}(G_{1}) + \chi_{s}(G_{2}) + \min\{|V_{1}| - \chi_{s}(G_{1}), |V_{2}| - \chi_{s}(G_{2})\}$$



Outline

Restricted Coloring Problems

Acyclic coloring Star Coloring

Applications to Hessian Computation

Star Coloring – Direct Hessian Computation Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs

The Join Operation *
Main Theorem
The Binary Case

Cographs

Definitions and Characterizations Algorithms for Acyclic and Star Coloring Example

Future Work

Cographs

Forbidden subgraph characterization

A graph is a cograph if and only if it is P_4 -free (does not contain P_4 as an induced subgraph).

Cographs

Forbidden subgraph characterization

A graph is a cograph if and only if it is P_4 -free (does not contain P_4 as an induced subgraph).

Restricted Coloring Characterization

A graph is a cograph if and only if every acyclic coloring is also a star coloring.

Cographs

Recursive Definition

A graph G is a cograph if and only if one of the following is true.

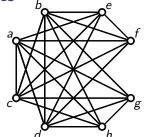
- (i) |V| = 1;
- (ii) there exists a collection $\{G_i\}_{i\in\mathcal{I}}$ of cographs such that

$$G = \bigcup_{i \in \mathcal{I}} G_i$$
 (disjoint union);

(iii) there exists a collection $\{G_i\}_{i\in\mathcal{I}}$ of cographs such that

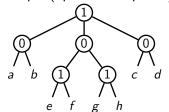
$$G = \bigotimes_{i \in \mathcal{I}} G_i$$
 (join).

Cographs and Cotrees



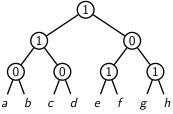
Canonical cotree

Unique (up to isomorphism)



Binary cotree

Algorithmically convenient

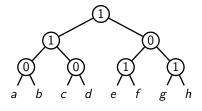


Acyclic and Star Coloring Cographs

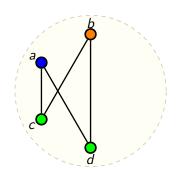
Theorem

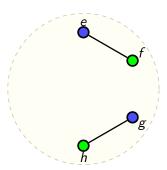
An optimal acyclic coloring of a cograph can be found in linear time. Furthermore, the obtained coloring is also an optimal star coloring.

Example

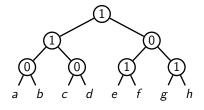


$$\chi_{\mathsf{a}}(G_1*G_2) = \chi_{\mathsf{a}}(G_1) + \chi_{\mathsf{a}}(G_2) + \min\{|V_1| - \chi_{\mathsf{a}}(G_1), |V_2| - \chi_{\mathsf{a}}(G_2)\}$$

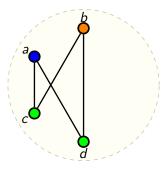




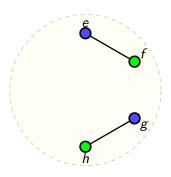
Example



$$\chi_{a}(G_{1}*G_{2}) = \chi_{a}(G_{1}) + \chi_{a}(G_{2}) + \min\{|V_{1}| - \chi_{a}(G_{1}), |V_{2}| - \chi_{a}(G_{2})\}$$

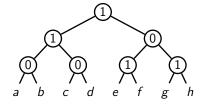


$$|V_1| = 4$$
, $\chi_a(G_1) = 3$



$$|V_2| = 4, \ \chi_a(G_1) = 2$$

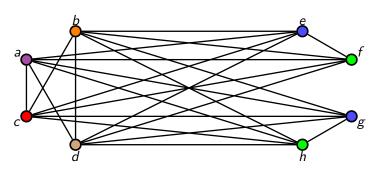
Example



$$\chi_{\mathfrak{a}}(G_{1}*G_{2}) = \chi_{\mathfrak{a}}(G_{1}) + \chi_{\mathfrak{a}}(G_{2}) + \min\{|V_{1}| - \chi_{\mathfrak{a}}(G_{1}), |V_{2}| - \chi_{\mathfrak{a}}(G_{2})\}$$

$$= 3 + 2 + \min\{4 - 3, 4 - 2\}$$

$$= 6$$



$$|V_1| = 4$$
, $\chi_a(G_1) = 3$

$$|V_2| = 4, \ \chi_a(G_1) = 2$$

Outline

Restricted Coloring Problems

Acyclic coloring
Star Coloring

Applications to Hessian Computation

Star Coloring – Direct Hessian Computation Acyclic Coloring – Indirect Hessian Computation

Acyclic and Star Coloring Joins of Graphs

The Join Operation *
Main Theorem
The Binary Case

Cographs

Definitions and Characterizations Algorithms for Acyclic and Star Coloring Example

Future Work

Future Work

Extension to other graph classes

Tree-cographs Same operations as cographs, but start with trees rather than single isolated vertices

 P_4 -sparse No set of five vertices induces more than one P_4 . (Generalize by adding a third composition operation.)

 P_4 -lite ...

 P_4 -extendible ...

Future Work

Extension to other graph classes

```
Tree-cographs Same operations as cographs, but start with trees rather than single isolated vertices

P_4-sparse No set of five vertices induces more than one P_4.

(Generalize by adding a third composition operation.)

P_4-lite ...

P_4-extendible ...
```

Other Decompositions

```
Modular
Split
Clique
Tree
```

Thank You!

Questions?